Document Type
Conference Proceeding
Publication Date
3-22-2021
Abstract
This paper investigates the feasibility of an electromagnetism energy harvester (EMEH) for scavenging electric energy from transportation infrastructures and powering of conventional sensors used for their structural health monitoring. The proposed EMEH consists of two stationary layers of three cuboidal permanent magnets (PMs), a rectangular thick aircore copper coil (COIL) attached to the free end of a flexible cantilever beam whose fixed end is firmly attached to the highway bridge oscillating in the vertical motion due to passing traffic. The proposed EMEH utilizes the concept of creating an alternating array of permanent magnets to achieve strong and focused magnetic field in a particular orientation. When the COIL is attached to the cantilever beam and is placed close to the PMs, ambient and traffic induced vibration of the cantilever beam induces eddy current in the COIL. The tip mass and stiffness of the cantilever beam are adjusted such that a low-frequency vibration due to the passing traffic can effectively induce the vibration of the cantilever beam. This vibration is further amplified by tuning the frequency of the cantilever beam and its tip mass to resonance frequency of the highway bridge. The numerical results show that the proposed EMEH is capable of producing an average electrical power more than 1 W at the resonance frequency 4 Hz over a time period of 1 second that alone is more than enough to power conventional wireless sensors.
Recommended Citation
Amjadian, Mohsen, Anil K. Agrawal, and Hani Nassif. "Feasibility of using a high-power electromagnetic energy harvester to power structural health monitoring sensors and systems in transportation infrastructures." In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2021, vol. 11591, pp. 285-294. SPIE, 2021. https://doi.org/10.1117/12.2585257
Publication Title
SPIE Proceedings
DOI
https://doi.org/10.1117/12.2585257
Comments
© SPIE.
Original published version available at https://doi.org/10.1117/12.2585257
SPIE grants to authors (and their employers) of papers, posters, and presentation recordings published in SPIE Proceedings or SPIE Journals on the SPIE Digital Library (hereinafter "publications") the right to post an author-prepared version or an official version (preferred) of the publication on an internal or external server controlled exclusively by the author/employer or the entity funding the research, provided that (a) such posting is noncommercial in nature and the publication is made available to users without charge; (b) an appropriate copyright notice and citation appear with the publication; and (c) a link to SPIE's official online version of the publication is provided using the item's DOI.