Document Type

Conference Proceeding

Publication Date



This paper investigates the feasibility of an electromagnetism energy harvester (EMEH) for scavenging electric energy from transportation infrastructures and powering of conventional sensors used for their structural health monitoring. The proposed EMEH consists of two stationary layers of three cuboidal permanent magnets (PMs), a rectangular thick aircore copper coil (COIL) attached to the free end of a flexible cantilever beam whose fixed end is firmly attached to the highway bridge oscillating in the vertical motion due to passing traffic. The proposed EMEH utilizes the concept of creating an alternating array of permanent magnets to achieve strong and focused magnetic field in a particular orientation. When the COIL is attached to the cantilever beam and is placed close to the PMs, ambient and traffic induced vibration of the cantilever beam induces eddy current in the COIL. The tip mass and stiffness of the cantilever beam are adjusted such that a low-frequency vibration due to the passing traffic can effectively induce the vibration of the cantilever beam. This vibration is further amplified by tuning the frequency of the cantilever beam and its tip mass to resonance frequency of the highway bridge. The numerical results show that the proposed EMEH is capable of producing an average electrical power more than 1 W at the resonance frequency 4 Hz over a time period of 1 second that alone is more than enough to power conventional wireless sensors.



Original published version available at

SPIE grants to authors (and their employers) of papers, posters, and presentation recordings published in SPIE Proceedings or SPIE Journals on the SPIE Digital Library (hereinafter "publications") the right to post an author-prepared version or an official version (preferred) of the publication on an internal or external server controlled exclusively by the author/employer or the entity funding the research, provided that (a) such posting is noncommercial in nature and the publication is made available to users without charge; (b) an appropriate copyright notice and citation appear with the publication; and (c) a link to SPIE's official online version of the publication is provided using the item's DOI.

Publication Title

SPIE Proceedings




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.