Document Type

Article

Publication Date

12-2023

Abstract

This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.

Comments

Copyright © 2023 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Open Journal of Civil Engineering

DOI

10.4236/ojce.2023.134050

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.