Document Type
Article
Publication Date
1-16-2015
Abstract
A multiple-timestep ab initio molecular dynamics scheme based on varying the two-electron integral screening method used in Hartree–Fock or density functional theory calculations is presented. Although screening is motivated by numerical considerations, it is also related to separations in the length- and timescales characterizing forces in a molecular system: Loose thresholds are sufficient to describe fast motions over short distances, while tight thresholds may be employed for larger length scales and longer times, leading to a practical acceleration of ab initio molecular dynamics simulations. Standard screening approaches can lead, however, to significant discontinuities in (and inconsistencies between) the energy and gradient when the screening threshold is loose, making them inappropriate for use in dynamics. To remedy this problem, a consistent window-screening method that smooths these discontinuities is devised. Further algorithmic improvements reuse electronic-structure information within the dynamics step and enhance efficiency relative to a naı̈ve multiple-timestepping protocol. The resulting scheme is shown to realize meaningful reductions in the cost of Hartree–Fock and B3LYP simulations of a moderately large system, the protonated sarcosine/glycine dipeptide embedded in a 19-water cluster.
Recommended Citation
Fatehi, S.; Steele, R. P. Multiple-Time Step Ab Initio Molecular Dynamics Based on Two-Electron Integral Screening. J. Chem. Theory Comput. 2015, 11, 884– 898, DOI: 10.1021/ct500904x
DOI
10.1021/ct500904x
Comments
This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/articlesonrequest/AOR-3PynRTiASCcZCZep2V3h.