Document Type

Article

Publication Date

1-2015

Abstract

In the present study, we discuss the electrospinning of medical grade polyurethane (Carbothane™ 3575A) nanofibers containing multi-walled-carbon-nanotubes (MWCNTs). A simple method that does not depend on additional foreign chemicals has been employed to disperse MWCNTs through high intensity sonication. Typically, a polymer solution consisting of polymer/MWCNTs has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were evaluated by SEM, TEM, FT-IR and Raman spectroscopy, confirming nanofibers containing MWCNTs. The biocompatibility and cell attachment of the produced nanofiber mats were investigated while culturing them in the presence of NIH 3T3 fibroblasts. The results from these tests indicated non-toxic behavior of the prepared nanofiber mats and had a significant attachment of cells towards nanofibers. The incorporation of MWCNTs into polymeric nanofibers led to an improvement in tensile stress from 11.40 ± 0.9 to 51.25 ± 5.5 MPa. Furthermore, complete alignment of the nanofibers resulted in an enhancement on tensile stress to 72.78 ± 5.5 MPa. Displaying these attributes of high mechanical properties and non-toxic nature of nanofibers are recommended for an ideal candidate for future tendon and ligament grafts.

Comments

© 2014 Elsevier Ltd. Published by Elsevier Ltd. Original published version available at https://www.doi.org/10.1016/j.jmbbm.2014.10.012

First Page

189

Last Page

198

Publication Title

Journal of the Mechanical Behavior of Biomedical Materials

DOI

10.1016/j.jmbbm.2014.10.012

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.