Computer Science Faculty Publications and Presentations

Document Type

Conference Proceeding

Publication Date

2024

Abstract

Recently, there has been a significant advancement in designing Self-Supervised Learning (SSL) frameworks for time series data to reduce the dependency on data labels. Among these works, hierarchical contrastive learning-based SSL frameworks, which learn representations by contrasting data embeddings at multiple resolutions, have gained considerable attention. Due to their ability to gather more information, they exhibit better generalization in various downstream tasks. However, when the time series data length is significant long, the computational cost is often significantly higher than that of other SSL frameworks. In this paper, to address this challenge, we propose an efficient way to train hierarchical contrastive learning models. Inspired by the fact that each resolution’s data embedding is highly dependent, we introduce importance-aware resolution selection based training framework to reduce the computational cost. In the experiment, we demonstrate that the proposed method significantly improves training time while preserving the original model’s integrity in extensive time series classification performance evaluations. Our code could be found here: https://github.com/KEEBVIN/IARS

Comments

Copyright IEEE.

Publication Title

2024 IEEE International Conference on Big Data (BigData)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.