Document Type

Article

Publication Date

8-2020

Abstract

We study the magnification of hardness of sparse sets in nondeterministic time complexity classes on a randomized streaming model. One of our results shows that if there exists a 2no(1) -sparse set in NDTIME(2no(1)) that does not have any randomized streaming algorithm with no(1) updating time, and no(1) space, then NEXP≠BPP , where a f(n)-sparse set is a language that has at most f(n) strings of length n. We also show that if MCSP is ZPP -hard under polynomial time truth-table reductions, then EXP≠ZPP .

Comments

© Springer Nature Switzerland AG 2020. Original published version available at https://doi.org/10.1007/978-3-030-58150-3_39

Publication Title

Computing and Combinatorics

DOI

10.1007/978-3-030-58150-3_39

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.