Document Type

Article

Publication Date

6-15-2018

Comments

We develop an randomized approximation algorithm for the size of set union problem ⏐A1∪A2∪...∪Am⏐, which given a list of sets A1,...,Am with approximate set size mi for Ai with mi∈((1−βL)|Ai|,(1+βR)|Ai|), and biased random generators with $Prob(x=\randomElm(A_i))\in \left[{1-\alpha_L\over |A_i|},{1+\alpha_R\over |A_i|}\right]$ for each input set Ai and element x∈Ai, where i=1,2,...,m. The approximation ratio for ⏐A1∪A2∪...∪Am⏐ is in the range [(1−ϵ)(1−αL)(1−βL),(1+ϵ)(1+αR)(1+βR)] for any ϵ∈(0,1), where αL,αR,βL,βR∈(0,1). The complexity of the algorithm is measured by both time complexity, and round complexity. The algorithm is allowed to make multiple membership queries and get random elements from the input sets in one round. Our algorithm makes adaptive accesses to input sets with multiple rounds. Our algorithm gives an approximation scheme with $O(\setCount\cdot(\log \setCount)^{O(1)})$ running time and O(logm) rounds, where m is the number of sets. Our algorithm can handle input sets that can generate random elements with bias, and its approximation ratio depends on the bias. Our algorithm gives a flexible tradeoff with time complexity $O\left(\setCount^{1+\xi}\right)$ and round complexity O(1ξ) for any ξ∈(0,1).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.