Document Type

Article

Publication Date

10-2019

Abstract

We present a novel automatic supervised object recognition algorithm based on a scale and rotation invariant Fourier descriptors algorithm. The algorithm is hierarchical in nature to capture the inherent intra-contour spatial relationships between the parent and child contours of an object. A set of distance metrics are introduced to go along with the hierarchical model. To test the algorithm, a diverse database of shapes is created and used to train standard classification algorithms, for shape-labeling. The implemented algorithm takes advantage of the multi-threaded architecture and GPU efficient image-processing functions present in OpenCV wherever possible, speeding up the running time and making it efficient for use in real-time applications. The technique is successfully tested on common traffic and road signs of real-world images, with excellent overall performance that is robust to moderate noise levels.

Comments

Original published version available at https://doi.org/10.1109/ICDIS.2019.00030

First Page

152

Last Page

159

Publication Title

2019 2nd International Conference on Data Intelligence and Security (ICDIS)

DOI

10.1109/ICDIS.2019.00030

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.