Document Type

Article

Publication Date

2022

Abstract

—In this paper, we propose a comprehensive unsupervised framework that leverages existing and novel multiview learning models, towards obtaining a single node embedding from a collection of node embeddings, combining the best of all worlds. Through extensive experiments, we demonstrate that the proposed multiview node embedding is able to perform on par or better than the best of its constituents and provide reliable performance across downstream tasks including node classification and graph reconstruction

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.