Document Type

Conference Proceeding

Publication Date

2-8-2023

Abstract

The central nervous system's (CNS) dopaminergic system dysfunction has been linked to neurological illnesses like schizophrenia and Parkinson's disease. As a result, sensitive and selective detection of dopamine is critical for the early diagnosis of illnesses associated with aberrant dopamine levels. In this research, we have investigated the performance of electrochemical screen-printed sensors for different concentrations of dopamine detection using graphene-based conductive PEDOT: PSS(G-PEDOT: PSS) and Polyaniline(GPANI) inks on the working electrode and compared the sensitivity. SEM characterization technique has been performed to visualize the microstructures of the proposed inks. We have investigated cyclic voltammetry (CV) electrochemical techniques with ferri/ferrocyanide redox couple to assess the efficiency of the designed electrodes in detecting dopamine. GPANI ink has shown to have better LOD and stability to detect dopamine with screen-printed electrodes. Further, we have also studied electrochemical analysis for the selective detection of dopamine without the interference of Ascorbic Acid (AA).

Comments

Copyright © 2022 by ASME. Original published version available at

https://doi.org/10.1115/IMECE2022-96193

Publication Title

Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition

DOI

10.1115/IMECE2022-96193

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.