School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

5-17-2022

Abstract

Biochar has proven its potential in removing heavy metal ions from water. The objective of this study was to evaluate locally obtained biomass feedstocks for biochar production and their efficiency as a sorbent for aqueous lead (Pb2+) removal. The biomass feedstocks consisted of avocado seed, avocado peel, grapefruit peel, and brown seaweed, which represent agricultural and marine biomasses. The biochar materials were produced in two different methods: (1) a laboratory tube furnace at 300 °C and (2) a Do-It-Yourself (DIY) biochar maker, “BioCharlie Log”. The biochars were characterized for selected physicochemical properties, and batch adsorption tests with 10 mg Pb2+ L−1 were conducted. All biochars exhibited >90% Pb2+ removal with the avocado seed and grapefruit peel biochars being the most effective (99%) from the tube-furnace-produced biochars. BioCharlie-produced-biochars showed similar Pb2+ removal (90–97%) with brown seaweed and avocado seed biochars being the most effective (97%). Land-based biochars showed a higher carbon content (>53%) than the brown seaweed biochar (28%), which showed the highest ash content (68%). Our results suggested that oxygen-containing surface functional groups in land-based biochar and mineral (ash) fraction in marine-based biochar play a key role in Pb2+ removal. View Full-Text

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Applied Sciences

DOI

10.3390/app12105040

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.