School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

7-14-2023

Abstract

Primary productivity in the coastal regions, linked to eutrophication and hypoxia, provides a critical understanding of ecosystem function. Although primary productivity largely depends on riverine nutrient inputs, estimation of the extent of riverine nutrient influences in the coastal regions is challenging. A nitrogen mass balance model is a practical tool to evaluate coastal ocean productivity to understand biological mechanisms beyond data observations. This study visualizes the biological production zones in Narragansett Bay, Rhode Island, USA, where hypoxia frequently occurs, by applying a nitrogen mass balance model. The Bay is divided into three zones - brown, green, and blue zones - based on primary productivity, which are defined by the mass balance model results. Brown, green, and blue zones represent a high physical process, a high biological process, and a low biological process zone, depending on river flow, nutrient concentrations, and mixing rates. The results of this study can better inform nutrient management in the coastal ocean in response to hypoxia and eutrophication.

Comments

Copyright 2023 JoVE. Original published version available at https://doi.org/10.3791/65728

Publication Title

Journal of Visualized Experiments

DOI

https://doi.org/10.3791/65728

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.