School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Document Type


Publication Date



Primary productivity in the coastal regions, linked to eutrophication and hypoxia, provides a critical understanding of ecosystem function. Although primary productivity largely depends on riverine nutrient inputs, estimation of the extent of riverine nutrient influences in the coastal regions is challenging. A nitrogen mass balance model is a practical tool to evaluate coastal ocean productivity to understand biological mechanisms beyond data observations. This study visualizes the biological production zones in Narragansett Bay, Rhode Island, USA, where hypoxia frequently occurs, by applying a nitrogen mass balance model. The Bay is divided into three zones - brown, green, and blue zones - based on primary productivity, which are defined by the mass balance model results. Brown, green, and blue zones represent a high physical process, a high biological process, and a low biological process zone, depending on river flow, nutrient concentrations, and mixing rates. The results of this study can better inform nutrient management in the coastal ocean in response to hypoxia and eutrophication.


Copyright 2023 JoVE. Original published version available at

Publication Title

Journal of Visualized Experiments


Available for download on Monday, January 01, 2024