School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

10-28-2024

Abstract

Indoor air quality (IAQ) poses a significant public health concern, and exposures to high levels of fine particulate matter (PM2.5) and carbon dioxide (CO2) could have detrimental health impacts. This study focused on assessing the indoor air pollutants in a residential house located in the town of Mission, Hidalgo County, South Texas, USA. The PM2.5 and CO2 were monitored indoors: the kitchen and the bedroom. This investigation also aimed to elucidate the effects of household activities such as cooking and human occupancy on these pollutants. Low-cost sensors (LCSs) from TSI AirAssure™ were used in this study. They were deployed within the breathing zone at approximately 1.5 m above the ground. Calibration of the low-cost sensors against Federal Equivalent Method (FEM) instruments was undertaken using a multiple linear regression method (MLR) model to improve the data accuracy. The indoor PM2.5 levels were significantly influenced by cooking activities, with the peak PM2.5 concentrations reaching up to 118.45 μg/m3. The CO2 levels in the bedroom increased during the occupant’s sleeping period, reaching as high as 1149.73 ppm. The health risk assessment was assessed through toxicity potential (TP) calculations for the PM2.5 concentrations. TP values of 0.21 and 0.20 were obtained in the kitchen and bedroom, respectively. The TP values were below the health hazard threshold (i.e., TP < 1). These low TP values could be attributed to the use of electric stoves and efficient ventilation systems. This research highlights the effectiveness of low-cost sensors for continuous IAQ monitoring and helps promote better awareness of and necessary interventions for salubrious indoor microenvironments.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Environments

DOI

https://doi.org/10.3390/environments11110237

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.