School of Earth, Environmental, & Marine Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

5-2025

Abstract

Roundup is one of the most widely used glyphosate-based harmful herbicides in the United States as well as globally, which poses a severe risk for terrestrial and aquatic organisms. In order to identify the detrimental effects of Roundup exposure in aquatic organisms, we investigated the environmentally relevant concentrations of Roundup exposure (low dose: 0.5 μg/L and high dose: 5.0 μg/L for 2 weeks) on renin expression, oxidative-nitrative stress biomarkers (e.g., 2,4-dinitrophenol, DNP; and 3-nitrotyrosine protein, NTP), prooxidant-antioxidant enzymes expressions (e.g., superoxide dismutase, SOD; and catalase, CAT), cellular apoptosis, and cytochrome P450 1A (CYP1A) mRNA levels in the kidneys of goldfish (Carassius auratus). Histopathological and in situ TUNEL analyses showed widespread tissue disruption (e.g., bowman's capsule shrinkage, melanin pigment formation, etc.) and induced apoptotic nuclei in the kidneys of goldfish. Immunohistochemical and quantitative real-time PCR (qRT-PCR) analyses showed a significant (p <  0.05) increase in the expression of renin, DNP, NTP, SOD, and CAT, as well as CYP1A mRNA levels in the kidneys of fish exposed to Roundup. These results suggest that environmentally relevant concentrations of Roundup disrupt kidney architecture by inducing oxidative-nitrative stress, cellular apoptosis, and change in osmoregulatory enzymes (i.e., renin) and prooxidant-antioxidant systems in the kidneys of teleost fishes.

Comments

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.© 2025 The Author(s). Environmental Toxicology published by Wiley Periodicals LLC.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Environmental Toxicology

DOI

10.1002/tox.24471

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.