School of Earth, Environmental, & Marine Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

9-2025

Abstract

Soil ecosystem services, like the ability to store water, have been depleted after a century of conventional, annual cropping, and perennial crops offer a solution to this and other agricultural environmental issues. We assessed the impact of Miscanthus × giganteus (miscanthus), a perennial biomass crop, on soil water holding capacity and structure compared to continuous maize (Zea mays L.) at two sites in Iowa. After three growing seasons, we measured the following: (1) maximum water holding capacity (MWHC) with and without soil structure, and (2) total porosity and pore size distribution (PSD) via micro-computed tomography (microCT). Miscanthus increased MWHC by 14.7% across both sites relative to maize (p = 0.002), and we attributed this to structural changes due to the lack of a crop effect when measured on structureless soils. No significant changes were detected in soil organic matter, texture, total porosity, or PSD that could explain the increase in MWHC under miscanthus. Our findings suggest that the increases in MWHC are primarily due to structural changes rather than increases in soil organic matter or porosity (at least porosity detectable by microCT). This study highlights miscanthus' potential to enhance soil water storage and underscores the need for further investigation to clarify the mechanisms through which this biomass crop influences soil structural properties.

Comments

Student publication. © 2025 The Author(s). Agrosystems, Geosciences & Environment published by Wiley Periodicals LLC on behalf of Crop Science Society of America and American Society of Agronomy.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Agrosystems, Geosciences & Environment

DOI

10.1002/agg2.70181

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.