Theses and Dissertations

Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Information Systems

First Advisor

Francis Kofi Andoh-Baidoo

Second Advisor

Xuan Wang

Third Advisor

Hong Qin


With the emergence of digital technology and the increasing availability of information on the internet, customers rely heavily on online reviews to inform their purchasing decisions. However, not all online reviews are helpful, and the factors that contribute to their helpfulness are complex and multifaceted. This dissertation addresses this gap in the literature by examining the antecedents that determine online review helpfulness using attribution theory. The dissertation consists of three essays. The first essay examines the impact of authenticity (review attribute) on review helpfulness, showing that the expressive authenticity of a review enhances its helpfulness. The second essay investigates the relationship between the reviewer attributes i.e., motivation, activity, and goals in online reviews. The study employs various machine learning techniques to investigate the influence of these factors on reviewers' goal attainment. The third essay explores how the reviewer attributes are related to the helpfulness of online reviews. The dissertation offers significant theoretical and practical implications. Theoretically, the dissertation provides new insights into novel review and reviewer attributes. The study proposes a taxonomy of online reviews using means-ends fusion theory offering a framework for understanding the relationships between different components of online reviewer attributes and their contribution to the attainment of specific goals, such as emotional satisfaction. The study also highlights the importance of understanding the motivations and activities of online reviewers in predicting emotional satisfaction and the conditional effects of complaining behavior on emotional satisfaction. The findings inform review platform owners, business owners, reviewers, and prospective consumers in decision-making through helpful reviews. To review platform owners, the findings help segregate helpful reviews from the humongous number of reviews by determining the authenticity of the review. To business owners, the findings can help in understanding consumer behavior and taking necessary actions to provide better service to their customers. To reviewers, this dissertation can act as a guideline to write helpful reviews and to determine their helpfulness. Finally, to consumers or review readers, this dissertation provides an understanding of helpful reviews, thus allowing them to take product or service purchase decisions.


Copyright 2023 Rakesh Guduru. All Rights Reserved.