Information Systems Faculty Publications and Presentations

Document Type

Article

Publication Date

6-2021

Abstract

With the development of information and communication technologies, all public tertiary hospitals in China began to use online outpatient appointment systems. However, the phenomenon of patient no-shows in online outpatient appointments is becoming more serious. The objective of this study is to design a prediction model for patient no-shows, thereby assisting hospitals in making relevant decisions, and reducing the probability of patient no-show behavior. We used 382,004 original online outpatient appointment records, and divided the data set into a training set (N1 = 286,503), and a validation set (N2 = 95,501). We used machine learning algorithms such as logistic regression, k-nearest neighbor (KNN), boosting, decision tree (DT), random forest (RF) and bagging to design prediction models for patient no-show in online outpatient appointments. The patient no-show rate of online outpatient appointment was 11.1% (N = 42,224). From the validation set, bagging had the highest area under the ROC curve and AUC value, which was 0.990, followed by random forest and boosting models, which were 0.987 and 0.976, respectively. In contrast, compared with the previous prediction models, the area under ROC and AUC values of the logistic regression, decision tree, and k-nearest neighbors were lower at 0.597, 0.499 and 0.843, respectively. This study demonstrates the possibility of using data from multiple sources to predict patient no-shows. The prediction model results can provide decision basis for hospitals to reduce medical resource waste, develop effective outpatient appointment policies, and optimize operations.

Comments

© 2021 Xi'an Jiaotong University. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Publication Title

Data Science and Management

DOI

10.1016/j.dsm.2021.06.002

Included in

Business Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.