Theses and Dissertations - UTB/UTPA
Date of Award
8-2010
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Mathematics
First Advisor
Dr. Baofeng Feng
Second Advisor
Dr. Paul Bracken
Third Advisor
Dr. Kenichi Maruno
Abstract
In Soliton theory, Hirota direct method is most efficient tool for seeking one soliton solutions or multi-soliton solutions of integrable nonlinear partial differential equations. The key step of the Hirota direct method is to transform the given equation into its Hirota bilinear form. Once the bilinear form of the given equation is found, we can construct the soliton and multi-soliton solutions of that model. Many interesting characteristics of Pfaffians were discovered through studies of soliton equations. In this thesis, a shallow water wave model and its bilinear equation are investigated. Using Hirota direct method, we obtain the multi-soliton solutions and Pfaffian solutions for a shallow water wave model.
Granting Institution
University of Texas-Pan American
Comments
Copyright 2010 Zhijiang Qiao. All Rights Reserved.
https://www.proquest.com/dissertations-theses/multi-soliton-solutions-model-equation-shallow/docview/760046387/se-2?accountid=7119