Theses and Dissertations - UTB/UTPA

Date of Award

5-2005

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Science

First Advisor

Dr. Zhixiang Chen

Second Advisor

Dr. Richard H. Fowler

Third Advisor

Dr. John Abraham

Abstract

This thesis studies the empirical analysis of two algorithms, Uplattice and Jumplattice for mining intentional knowledge of distance-based outliers [19]. These algorithms detect strongest and weak outliers among them. Finding outliers is an important task required in major applications such as credit-card fraud detection, and the NHL statistical studies. Datasets of varying sizes have been tested to analyze the empirical values of these two algorithms. Effective data structures have been used to gain efficiency in memory-performance. The two algorithms provide intentional knowledge of the detected outliers which determines as to why an identified outlier is exceptional. This knowledge helps the user to analyze the validity of outliers and hence provides an improved understanding of the data.

Comments

Copyright 2005 Enbamoorthy Prasanthi. All Rights Reserved.

https://go.openathens.net/redirector/utrgv.edu?url=https://www.proquest.com/dissertations-theses/empirical-performance-analysis-two-algorithms/docview/305371979/se-2?accountid=7119

Granting Institution

University of Texas-Pan American

Share

COinS