Marketing Faculty Publications and Presentations

Document Type

Article

Publication Date

11-6-2023

Abstract

This research introduces innovative approaches to enhance intrusion detection systems (IDSs) by addressing critical challenges in existing methods. Various machine-learning techniques, including nature-inspired metaheuristics, Bayesian algorithms, and swarm intelligence, have been proposed in the past for attribute selection and IDS performance improvement. However, these methods have often fallen short in terms of detection accuracy, detection rate, precision, and F-score. To tackle these issues, the paper presents a novel hybrid feature selection approach combining the Bat metaheuristic algorithm with the Residue Number System (RNS). Initially, the Bat algorithm is utilized to partition training data and eliminate irrelevant attributes. Recognizing the Bat algorithm's slower training and testing times, RNS is incorporated to enhance processing speed. Additionally, principal component analysis (PCA) is employed for feature extraction. In a second phase, RNS is excluded for feature selection, allowing the Bat algorithm to perform this task while PCA handles feature extraction. Subsequently, classification is conducted using naive bayes, and k-Nearest Neighbors. Experimental results demonstrate the remarkable effectiveness of combining RNS with the Bat algorithm, achieving outstanding detection rates, accuracy, and F-scores. Notably, the fusion approach doubles processing speed. The findings are further validated through benchmarking against existing intrusion detection methods, establishing their competitiveness.

Comments

Student publication. © 2023 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Journal of Information and Telecommunication

DOI

10.1080/24751839.2023.2272484

Included in

Marketing Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.