Document Type
Article
Publication Date
12-22-2022
Abstract
Real-time monitoring of drug delivery in an intravenous infusion system can prevent injury caused by improper drug doses. As the medicine must be administered into the vein at different rates and doses in different people, an ideal intravenous infusion system requires both a low flow rate and large dynamic range monitoring. In this study, a bio-inspired and micromachined volumetric flow sensor is presented for the biomedical application of an intravenous system. This was realized by integrating two sensing units with different sensitivities on one silicon die to achieve a large dynamic range of the volumetric flow rate. The sensor was coated with a parylene layer for waterproofing and biocompatibility purposes. A new packaging scheme incorporating a silicon die into a flow channel was employed to demonstrate the working prototype. The test results indicate that the sensor can detect a volumetric flow rate as low as 2 mL/h, and its dynamic range is from 2 mL/h to 200 mL/h. The sensor performed better than the other two commercial sensors for low-flow detection. The high sensitivity, low cost, and small size of this flow sensor make it promising for intravenous applications.
Recommended Citation
Zhang, Lansheng, et al. "Bio-Inspired Micromachined Volumetric Flow Sensor with a Big Dynamic Range for Intravenous Systems." Sensors 23.1 (2022): 234. https://doi.org/10.3390/s23010234
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Sensors
DOI
10.3390/s23010234
Comments
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).