Document Type
Article
Publication Date
5-10-2021
Abstract
High-fidelity simulations of coughs and sneezes that serve as virtual experiments are presented, and they offer an unprecedented opportunity to peer into the chaotic evolution of the resulting airborne droplet clouds. While larger droplets quickly fall-out of the cloud, smaller droplets evaporate rapidly. The non-volatiles remain airborne as droplet nuclei for a long time to be transported over long distances. The substantial variation observed between the different realizations has important social distancing implications, since probabilistic outlier-events do occur and may need to be taken into account when assessing the risk of contagion. Contrary to common expectations, we observe dry ambient conditions to increase by more than four times the number of airborne potentially virus-laden nuclei, as a result of reduced droplet fall-out through rapid evaporation. The simulation results are used to validate and calibrate a comprehensive multiphase theory, which is then used to predict the spread of airborne nuclei under a wide variety of ambient conditions.
Recommended Citation
Liu, K., Allahyari, M., Salinas, J.S. et al. Peering inside a cough or sneeze to explain enhanced airborne transmission under dry weather. Sci Rep 11, 9826 (2021). https://doi.org/10.1038/s41598-021-89078-7
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Scientific Reports
DOI
10.1038/s41598-021-89078-7
Comments
Copyright © 2021, The Author(s)