Document Type

Article

Publication Date

2-8-2018

Abstract

Coupled bed-flow direct numerical simulations investigating the early stages of pattern formation and bedform (ripple) interactions were examined in a previous paper (Part 1), making use of the resolved flow field. In this paper (Part 2), we compare our results to published experimental data and provide an extensive quantitative analysis of the bed using spectral analysis and two-point correlations. The effect of the mobile rippled bed on the flow structure and turbulence is investigated locally (at specific streamwise locations) and over the entire computational domain. We show that developing ripples attain a self-similar profile in both the shape and the corresponding bed shear stress. We demonstrate the importance of neighboring structures, especially upstream neighbors, on bedform dynamics in terms of the growth, decay, and speed of ripples. Finally, we examine the defect-free interactions in the later stages of bed evolution, which primarily lead to wave coarsening.

Key Points

  • Isolated ripples maintain a self-similar shape and bed shear stress profiles
  • Bedform-bedform interactions can significantly modify bedform celerity
  • Spectra of bed height variation suggest a Reynolds number dependence

Comments

©2018. American Geophysical Union. All Rights Reserved.

Publication Title

Journal of Geophysical Research: Earth Surface

DOI

10.1002/2017JF004399

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.