Document Type

Conference Proceeding

Publication Date

4-2017

Abstract

Prevention of bearing failures which may lead to catastrophic derailment is a major safety concern for the railroad industry. Advances in bearing condition monitoring hold the promise of early detection of bearing defects, which will improve system reliability by permitting early replacement of failing components. However, to minimize disruption to operations while providing the maximum level of accident prevention that early detection affords, it will be necessary to understand the defect growth process and try to quantify the growth speed to permit economical, non-disruptive replacement of failing components rather than relying on immediate removal upon detection. The study presented here investigates the correlation between the rate of surface defect (i.e. spall) growth per mile of full-load operation and the size of the defects. The data used for this study was acquired from defective bearings that were run under various load and speed conditions utilizing specialized railroad bearing dynamic test rigs operated by the University Transportation Center for Railway Safety (UTCRS) at the University of Texas Rio Grande Valley (UTRGV). Periodic removal and disassembly of the railroad bearings was carried out for inspection and defect size measurement and documentation. Castings were made of spalls using low-melting, zero shrinkage Bismuth-based alloys so that a permanent record of the full spall geometry could be retained. Spalls were measured using optical techniques coupled with digital image analysis and also with a manual coordinate measuring instrument with the resulting field of points manipulated in MatLab™ and Solidworks™. The spall growth rate in area per mile of full-load operation was determined and, when plotted versus spall area, clear trends emerge. Initial spall size is randomly distributed as it depends on originating defect depth, size, and location on the rolling raceway. The growth of surface spalls is characterized by two growth regimes with an initial slower growth rate which then accelerates when spalls reach a critical size. Scatter is significant but upper and lower bounds for spall growth rates are proposed and the critical dimension for transition to rapid spall growth is estimated. The main result of this study is a preliminary model for spall growth which can be coupled to bearing condition monitoring tools to permit economical scheduling of bearing replacement after the initial detection of spalls.

Comments

Copyright © 2017 by ASME

Publication Title

Proceedings of the 2017 Joint Rail Conference. 2017 Joint Rail Conference.

DOI

https://doi.org/10.1115/JRC2017-2262

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.