Document Type

Article

Publication Date

3-2024

Abstract

Wound infection is still an important challenge in healing of different types of skin injuries. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action. In this study, by electrospinning process Tanacetum polycephalum essential oil (EO), as a natural antibacterial and anti-inflammatory agent, along with Amoxicillin (AMX) as an antibiotic are incorporated into PVA/gelatin-based nanofiber mats individually and in combination to fabricate a novel wound dressing. Briefly, we fabricated PVA/gelatin loaded by Amoxicillin as first layer for direct contact with wound surface to protects the wound from exogenous bacteria, and then built a PVA/gelatin/Tanacetum polycephalum essential oil layer on the first layer to help cleanses the wound from infection and accelerates wound closure. Finally, PVA/gelatin layer as third layer fabricated on middle layer to guarantee desirable mechanical properties. For each layer, the electrospinning parameters were adjusted to form bead-free fibers. The morphology of fabricated nanofiber scaffolds was characterized by Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM). Microscopic images demonstrated the smooth bead-free microstructures fabrication of every layer of nanofiber with a uniform fiber size of 126.888 to 136.833 nm. While, EO and AMX increased the diameter of nanofibers but there was no change in physical structure of nanofiber. The water contact angle test demonstrated hydrophilicity of nanofibers with 47.35°. Although EO and AMX had little effect on reducing hydrophilicity but nanofibers with contact angle between 51.4° until 65.4° are still hydrophilic. Multilayer nanofibers loaded by EO and AMX killed 99.99 % of both gram-negative and gram-positive bacteria in comparison with control and PVA/gelatin nanofiber. Also, in addition to confirming the non-toxicity of nanofibers, MTT results also showed the acceleration of cell proliferation. In vivo wound evaluation in mouse models showed that designed nanofibrous scaffolds could be an appropriate option for wound treatment due to their positive effect on angiogenesis, collagen deposition, granulation tissue formation, epithelialization, and wound closure.

Comments

Original published version available at https://doi.org/10.1016/j.ijbiomac.2024.129931

Publication Title

International Journal of Biological Macromolecules

DOI

10.1016/j.ijbiomac.2024.129931

Available for download on Wednesday, February 12, 2025

Share

COinS