Document Type

Article

Publication Date

7-28-2024

Abstract

Antimony (Sb) and its composites have been recognized as potentially good anode materials for lithium-ion batteries (LIBs) due to their relatively high theoretical capacity of 660 mAh g−1 and to their low cost. However, Sb-based anodes suffer from a high-volume change during the lithiation/delithiation process that results in capacity fading and anode degradation after prolonged charge/discharge cycles. To address this issue, Sb2O3/TiO2 nanocomposite electrodes can be synthesized and used as anodes for LIBs with high capacity and good electrochemical stability. In the present work, TiO2@Sb2O3 composites with different (TiO2:Sb2O3) ratios of 0:1, 1:1, 1:4 and 3:1 were synthesized and directly used as anode materials for LIBs. The electrochemical performance of the TiO2/Sb2O3 composite anode with different ratios of TiO2 to Sb2O3 was evaluated by galvanostatic charge/discharge, rate performance and cyclic voltammetry. The 3:1 (TiO2:Sb2O3) composite anode delivered the highest capacity compared to those of the TiO2, SbO3, 1:1 (TiO2:Sb2O3) and 1:4 (TiO2:Sb2O3) electrodes. The TiO2@Sb2O3 composite anode with a 3:1 ratio exhibited a stabilized capacity of 536 mAh g−1 after 100 cycles at 100 mA g−1 and showed excellent rate performance, with current densities between 50 and 500 mA g−1. The improved electrochemical performance was attributed to the synergistic effect of TiO2 (i.e., the coating of Sb2O3 with TiO2) on reducing the volume change of the Sb anode material after prolonged charge/discharge cycles and on maintaining a stable interface between the electrolyte and the composite electrode material.

Comments

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Applied Sciences

DOI

https://doi.org/10.3390/app14156598

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.