Document Type

Conference Proceeding

Publication Date

6-26-2024

Abstract

Freshman engineering students can have a hard time transitioning to college. The freshman year is critical to the students’ academic success; in this year they learn basic skills and establish essential networks with other students, faculty, and resources. How can we help these freshman engineering students in this transition? We propose that freshman students can learn from the engineering design innovation process and apply it by analogy to the design of their academic pathways. There are multiple similarities between product innovation (i.e., technology) and the continuous academic challenges faced by the student. Engineers as designers and innovators have a vast and rich repository of techniques, tools, and approaches to develop new technologies, and a parallelism can be drawn between the design and innovation of a technology (e.g., redesign of a kitchen appliance), and the “design” of the students’ academic career pathways. During the Spring 2023 semester pilot implementation program, students in Intro to Mechanical Engineering (Course A) worked in teams in a 6-week product innovation project to redesign a simple kitchen appliance. Students learned basic concepts of the design process (e.g., creative exploration of solutions, decision making, multi objective evaluation, etc.). These same students concurrently took Course B (Learning Frameworks) where they worked on a 6-week project to define their career pathways. Both projects, product innovation and career pathways, followed the Challenge Based Instruction (CBI) approach. Periodically, participant students were shown how to use the lessons from product innovation by analogy and reflection in their career pathways project. The objective is for students to learn about the engineering design process and to apply it to their academic challenges by analogy. This prepares students with meta skills to help solve future problems in their academic path, and at each iteration, the students transform themselves, hence the use of the term self-transformation (also referred as “self-innovation”). Data collected from pre and post surveys will be presented to measure self-efficacy in engineering design, grit, motivation to learn, and STEM identity. Participant interviews provide a qualitative insight into the intervention. This project is funded by NSF award 2225247.

Comments

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2024 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference.

Publication Title

2024 ASEE Annual Conference & Exposition

DOI

http://doi.org/10.18260/1-2--48515

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.