Mechanical Engineering Faculty Publications and Presentations

Document Type

Article

Publication Date

5-17-2025

Abstract

In this research, an interdigitated gear-shaped working electrode is presented for cortisol sensing. Overall, the sensor was designed in a three-electrode system and was fabricated using direct laser scribing. A synthesized conductive ink based on graphene and polyaniline was further employed to enhance the electrochemical performance of the sensor. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were employed for physicochemical characterization of the laser-induced graphene (LIG) sensor. Cortisol, a biomarker essential in detecting stress, was detected both in phosphate-buffered saline (PBS, pH = 7.4) and human serum within a linear range of 100 ng/mL to 100 µg/mL. Ferri/ferrocyanide was employed as the redox probe to detect cortisol in PBS. The electrochemical performance of the developed sensor was assessed via differential pulse voltammetry (DPV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The electrochemical performance demonstrates high sensitivity and selectivity alongside strong repeatability (relative standard deviation (RSD) = 3.8%, n = 4) and reproducibility (RSD = 5.85%, n = 5). Overall, these results highlight the sensor’s reliability, high sensitivity, and repeatability and reproducibility in the detection of cortisol. The sensor successfully detected cortisol in the complex medium of human serum and effectively distinguished it in a ternary mixture containing cortisol and dopamine. Also, the use of direct laser writing on Kapton film makes the approach cost-effective and thus disposable, making it suitable for chronic stress diagnostics and neurological research applications.

Comments

© 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Biosensors

DOI

10.3390/bios15050321

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.