Mechanical Engineering Faculty Publications and Presentations

Document Type

Article

Publication Date

5-2020

Abstract

This study investigates the effects of the initial grain size and temperature (ranging from room temperature to 1100 °C) on the mechanical properties and microstructure evolution of Ti2AlC MAX phase. A Hall-Petch like relationship is observed between compressive strength and the grain size below brittle-to-plastic transition temperature (BPTT). However, the compressive strength of fine-grained MAX phase decreases more rapidly with increasing temperature resulting in inverse Hall-Petch effect above BPTT. Results from postmortem EBSD analysis reveal complex microstructural evolution in both fine- and coarse-grained microstructures during loading at different temperatures. The pronounced drop in compressive strength for fine-grained microstructures at temperatures close to BPTT is attributed to creep induced grain boundary sliding resulting in texture development with more grains oriented for easy slip. In coarse-grained microstructures, no significant texture development is observed even though grain refinement occurs at all temperatures. A mathematical model has also been formulated to predict the experimentally observed grain size and temperature dependent variation in the compressive strength of Ti2AlC over a wide range of grain sizes and test temperatures. The mathematical model accounts for the competing effects of Hall-Petch strengthening and high temperature creep induced softening mechanisms.

Comments

Original published version available at https://doi.org/10.1016/j.actamat.2020.02.057

Publication Title

Acta Materialia

DOI

10.1016/j.actamat.2020.02.057

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.