Document Type
Article
Publication Date
9-2018
Abstract
Advanced power plant alloys must endure high temperatures and pressures for durations at which creep data are often not available, necessitating the extrapolation of creep life. Many methods have been proposed to extrapolate creep life, and one of recent significance is a set of equations known as the Wilshire equations. With this method, multiple approaches can be used to determine creep activation energy, increase the goodness of fit of available experimental data, and improve the confidence level of calculating long-term creep strength at times well beyond the available experimental data. In this article, the Wilshire equation is used to extrapolate the creep life of HR6W and Sanicro 25, and different methods to determine creep activation energy, region splitting, the use of short-duration test data, and the omission of very-short-term data are investigated to determine their effect on correlation and calculations. It was found that using a known value of the activation energy of lattice self-diffusion, rather than calculating QC*" role="presentation">Q∗C from each data set, is both the simplest and most viable method to determine QC*" role="presentation">Q∗C . Region-splitting improved rupture time calculations for both alloys. Extrapolating creep life from short-term data for these alloys was found to be reasonable.
Recommended Citation
Cedro, V., Garcia, C., & Render, M. (2018). Use of the Wilshire Equations to Correlate and Extrapolate Creep Data of HR6W and Sanicro 25. Materials, 11(9), 1585. https://doi.org/10.3390/ma11091585
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Materials
DOI
10.3390/ma11091585
Comments
Original published version available at https://doi.org/10.3390/ma11091585