Document Type
Article
Publication Date
3-2021
Abstract
Cesium lead halide perovskite nanocrystals (NCs) have drawn a great deal of interest in optoelectronic and photonic applications due to their intrinsic and attractive photoluminescence properties. Though, their commercially viability is of concern due to their intrinsic instability. In this study, blue and green luminous PMMA-CsPbX3(X=Cl/Br) fibers were fabricated via forcespinning technique, where the polymer matrix encapsulated the NCs. Blue CsPbX3 NCs (b- CPX NCs) were synthesized at ambient conditions while blue to green CsPbX3 NCs (g-CPX NCs) fine color tuning was obtained after heat treatment at 150°C.Field emission scanning electron microscopy (FESEM) shows fibers with diameters in the single digit microscale. Efficient encapsulation of NCs in the PMMA fiber was confirmed using FTIR spectroscopy. UV visible spectra of the NCs suggested a quantum confinement effect. Pristine NCs shows bright blue and green emission from b-CPX and g-CPX NCs under UV irradiation (365 nm) which was successfully reproduced even upon encapsulation in the PMMA matrix. In both cases, the PMMA besides promoting QD encapsulation also enhanced the photoluminescent quantum yield (PLQY) from 25.5% to 31.1% (blue PMMA fibers) and 42.6% to 51.4% (green PMMA fibers) compare to bare NCs PLQY. The PMMA-CsPbX3(X=Cl/Br) also possessed narrow half-peak width compared to pristine NCs suggesting high color purity. This work provides a novel polymer fiber-based encapsulation approach to solve the intrinsic instability issues of CsPbX3 NCs, therefore prompting promising practical applications.
Recommended Citation
S. S. H. Abir, S. K. Gupta, A. Ibrahim, B. B. Srivastava and K. Lozano, Mater. Adv., 2021, DOI: 10.1039/D1MA00183C.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License
Publication Title
Materials Advances
DOI
10.1039/d1ma00183c
Comments
© 2021 The Author(s). Published by the Royal Society of Chemistry