Document Type

Article

Publication Date

2021

Abstract

In this work, the radioisotope 64Cu was obtained from copper (II) chloride dihydrate in a nuclear research reactor by neutron capture, (63Cu(n, )64Cu), and incorporated into boron nitride nanotubes (BNNTs) using a solvothermal process. The produced 64Cu-BNNTs were analyzed by TEM, MEV, FTIR, XDR, XPS and gamma spectrometry, with which it was possible to observe the formation of64Cu nanoparticles, with sizes of up to 16 nm, distributed through nanotubes. The synthesized of 64Cu nanostructures showed a pure photoemission peak of 511 keV, which is characteristic of gamma radiation. This type of emission is desirable for Photon Emission Tomography (PET scan) image acquisition, as well as its use in several cancer treatments. Thus, 64Cu-BNNTs present an excellent alternative as theranostic nanomaterials that can be used in diagnosis and therapy by different techniques used in nuclear medicine.

Comments

© 2021 by the authors.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Nanomaterials

DOI

10.3390/nano11112907

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.