Document Type

Conference Proceeding

Publication Date

9-26-2023

Abstract

Concentrated solar power (CSP) is a reliable renewable energy source that is progressively lowering its cost of energy. However, the heat loss due to reflected and emitted radiation hinders the maximum achievable thermal efficiency for solar receiver tubes on the solar tower. Current solar selective coatings cannot withstand the high temperatures that come with state-of-the-art CSP towers often needing to be recoated soon after initial operation. We intend to use Inconel 718 with different additive manufacturing (AM) practices to construct surfaces that allow for more light-trapping to occur. By adjusting printing parameters, we can tailor a surface to allow for more absorption while diminishing emitted radiation heat loss. By using COMSOL Multiphysics, we can generate these theoretical surfaces to emulate a printed surface, and using the coupled Multiphysics we can simulate how the surface dictates radiation properties. Our results show that by having a rougher surface we can enhance the absorptivity of Inconel 718 (IN718) by 38.8%. We expect this work to transform how solar absorber tubes are manufactured without using selective coatings and supplement the US Department of Energy (DOE) 2030 SunShot Initiative.

Comments

Copyright © 2023 by ASME

Publication Title

Proceedings of the ASME 2023 17th International Conference on Energy Sustainability collocated with the ASME 2023 Heat Transfer Summer Conference

DOI

10.1115/ES2023-106936

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.