School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Document Type
Article
Publication Date
5-2021
Abstract
Klein forms are used to construct generators for the graded algebra of modular forms of level 7. Dissection formulas for the series imply Ramanujan type congruences modulo powers of 7 for a family of generating functions that subsume the counting function for 7-core partitions. The broad class of arithmetic functions considered here enumerate colored partitions by weights determined by parts modulo 7. The method is a prototype for similar analysis of modular forms of level 7 and at other prime levels. As an example of the utility of the dissection method, the paper concludes with a derivation of novel congruences for the number of representations by x^2+xy+2y^2 in exactly k ways.
Recommended Citation
Huber, Timothy, and Dongxi Ye. "Ramanujan type congruences for quotients of level 7 Klein forms." Journal of Number Theory 222 (2021): 181-203. https://doi.org/10.1016/j.jnt.2020.11.003
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Publication Title
Journal of Number Theory
DOI
10.1016/j.jnt.2020.11.003
Comments
Original published version available at https://doi.org/10.1016/j.jnt.2020.11.003