School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Document Type
Article
Publication Date
2016
Abstract
The smallest part is a rational function. This result is similar to the closely related case of partitions with fixed differences between largest and smallest parts which has recently been studied through analytic methods by Andrews, Beck, and Robbins. Our approach is geometric: We model partitions with bounded differences as lattice points in an infinite union of polyhedral cones. Surprisingly, this infinite union tiles a single simplicial cone. This construction then leads to a bijection that can be interpreted on a purely combinatorial level.
Recommended Citation
Breuer, F., Kronholm, B. A polyhedral model of partitions with bounded differences and a bijective proof of a theorem of Andrews, Beck, and Robbins. Res. number theory 2, 2 (2016). https://doi.org/10.1007/s40993-015-0033-3
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Research in Number Theory
DOI
10.1007/s40993-015-0033-3
Comments
© 2016 Breuer and Kronholm