School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Schrödinger Equation for a Particle on a Curved Space and Superintegrability
Document Type
Article
Publication Date
2015
Abstract
A formulation of quantum mechanics on spaces of constant curvature is studied by quantizing the Noether momenta and using these to form the quantum Hamiltonian. This approach gives the opportunity of studying a superintegrable quantum system. It is shown there are three different ways of obtaining a Hilbert space of common eigenstates. Three different orthogonal coordinate systems are determined, one for each case. It is shown how the Schrödinger equation can be rendered separable in each of the cases.
Recommended Citation
Paul Bracken. "Schrödinger Equation for a Particle on a Curved Space and Superintegrability." J. Geom. Symmetry Phys. 38 25 - 37, 2015. https://doi.org/10.7546/jgsp-38-2015-25-37
Publication Title
J. Geom. Symmetry Phys.
DOI
10.7546/jgsp-38-2015-25-37
Comments
Copyright © 2015 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences