School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Schrödinger Equation for a Particle on a Curved Space and Superintegrability

Document Type

Article

Publication Date

2015

Abstract

A formulation of quantum mechanics on spaces of constant curvature is studied by quantizing the Noether momenta and using these to form the quantum Hamiltonian. This approach gives the opportunity of studying a superintegrable quantum system. It is shown there are three different ways of obtaining a Hilbert space of common eigenstates. Three different orthogonal coordinate systems are determined, one for each case. It is shown how the Schrödinger equation can be rendered separable in each of the cases.

Comments

Copyright © 2015 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

Publication Title

J. Geom. Symmetry Phys.

DOI

10.7546/jgsp-38-2015-25-37

Share

COinS