School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

6-2-2021

Abstract

A closed piecewise linear curve is called integral if it is comprised of unit intervals. Kenyon's problem asks whether for every integral curve γ in ℝ3, there is a dome over γ, i.e. whether γ is a boundary of a polyhedral surface whose faces are equilateral triangles with unit edge lengths. First, we give an algebraic necessary condition when γ is a quadrilateral, thus giving a negative solution to Kenyon's problem in full generality. We then prove that domes exist over a dense set of integral curves. Finally, we give an explicit construction of domes over all regular n-gons.

Comments

Original published version available at https://doi.org/10.1093/imrn/rnab138

Publication Title

International Mathematics Research Notices

DOI

10.1093/imrn/rnab138

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.