School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

10-2022

Abstract

In this paper, we propose a novel mesh-free numerical method for solving the elliptic interface problems based on deep learning. We approximate the solution by the neural networks and, since the solution may change dramatically across the interface, we employ different neural networks for each sub-domain. By reformulating the interface problem as a least-squares problem, we discretize the objective function using mean squared error via sampling and solve the proposed deep least-squares method by standard training algorithms such as stochastic gradient descent. The discretized objective function utilizes only the point-wise information on the sampling points and thus no underlying mesh is required. Doing this circumvents the challenging meshing procedure as well as the numerical integration on the complex interfaces. To improve the computational efficiency for more challenging problems, we further design an adaptive sampling strategy based on the residual of the least-squares function and propose an adaptive algorithm. Finally, we present several numerical experiments in both 2D and 3D to show the flexibility, effectiveness, and accuracy of the proposed deep least-square method for solving interface problems.

Comments

Original published version available at https://doi.org/10.1016/j.cam.2022.114358

Publication Title

Journal of Computational and Applied Mathematics

DOI

10.1016/j.cam.2022.114358

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.