School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Document Type
Article
Publication Date
8-2022
Abstract
Let Ω be a smooth bounded pseudoconvex domain in Cn. Let 1≤q0≤(n−1). We show that if q0--sums of eigenvalues of the Levi form are comparable, then if the Diederich--Fornæss index of Ω is 1, the ∂¯¯¯--Neumann operators Nq and the Bergman projections Pq−1 are regular in Sobolev norms for q0≤q≤n. In particular, for domains in C2, Diederich--Fornæss index 1 implies global regularity in the ∂¯¯¯--Neumann problem.
Recommended Citation
Liu, Bingyuan, and Emil J. Straube. "Diederich-Forn\ae ss index and global regularity in the $\overline {\partial} $-Neumann problem: domains with comparable Levi eigenvalues." arXiv preprint arXiv:2207.14197 (2022).
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.