School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

2-13-2023

Abstract

In this work we initiate the study of the correspondence between p-adic statistical field theories (SFTs) and neural networks (NNs). In general quantum field theories over a p-adic spacetime can be formulated in a rigorous way. Nowadays these theories are considered just mathematical toy models for understanding the problems of the true theories. In this work we show these theories are deeply connected with the deep belief networks (DBNs). Hinton et al. constructed DBNs by stacking several restricted Boltzmann machines (RBMs). The purpose of this construction is to obtain a network with a hierarchical structure (a deep learning architecture). An RBM corresponds to a certain spin glass, we argue that a DBN should correspond to an ultrametric spin glass. A model of such a system can be easily constructed by using p-adic numbers. In our approach, a p-adic SFT corresponds to a p-adic continuous DBN, and a discretization of this theory corresponds to a p-adic discrete DBN. We show that these last machines are universal approximators. In the p-adic framework, the correspondence between SFTs and NNs is not fully developed. We point out several open problems.

Comments

Original published version available at https://doi.org/10.1016/j.physa.2023.128492

Publication Title

Physica A: Statistical Mechanics and its Applications

DOI

https://doi.org/10.1016/j.physa.2023.128492

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.