School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

10-2018

Abstract

As a powerful signal processing tool for imaging moving targets, placing radar on a non-stationary platform (such as an aerostat) is a future direction of Inverse Synthetic Aperture Radar (ISAR) systems. However, more phase errors are introduced into the received signal due to the instability of the radar platform, making it difficult for popular algorithms to accurately perform motion compensation, which leads to severe effects in the resultant ISAR images. Moreover, maneuvering targets may have complex motion whose motion parameters are unknown to radar systems. To overcome the issue of non-stationary platform ISAR autofocus imaging, a high-resolution imaging method based on the phase retrieval principle is proposed in this paper. Firstly, based on the spatial geometric and echo models of the ISAR maneuvering target, we can deduce that the radial motion of the radar platform or the vibration does not affect the modulus of the ISAR echo signal, which provides a theoretical basis for the phase recovery theory for the ISAR imaging. Then, we propose an oversampling smoothness (OSS) phase retrieval algorithm with prior information, namely, the phase of the blurred image obtained by the classical imaging algorithm replaces the initial random phase in the original OSS algorithm. In addition, the size of the support domain of the OSS algorithm is set with respect to the blurred target image. Experimental simulation shows that compared with classical imaging methods, the proposed method can obtain the resultant motion-compensated ISAR image without estimating the radar platform and maneuvering target motion parameters, wherein the fictitious target is perfectly focused.

Comments

Original published version available at http://dx.doi.org/10.3390/s18103333

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Sensors

DOI

10.3390/s18103333

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.