School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Weighted Lp(⋅) -regularity for fully nonlinear parabolic equations

Document Type

Article

Publication Date

10-12-2020

Abstract

We prove a global weighted Lp(⋅) -regularity for the Hessian of strong solution to the Cauchy–Dirichlet problem for fully nonlinear parabolic equations in a bounded C1,1 -domain, where the associated nonlinearity is (δ,R) -vanishing in independent variables, the variable exponent p(⋅) is log -Hölder continuous, and the weight ω is of the Ap(⋅)/(n+1) class. As a consequence, we also derive Morrey’s regularity for the Hessian of strong solution to this problem under consideration, which implies a global Hölder continuity of the spatial gradient under the assumption of higher regular datum.

Comments

Copyright © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

https://rdcu.be/c51v1

Publication Title

Calc. Var.

DOI

10.1007/s00526-020-01848-9

Share

COinS