School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Conference Proceeding

Publication Date

5-2016

Abstract

Included in Ramanujan’s Notebooks are two reciprocal identities. The first identity connects the Rogers-Ramanujan continued fraction with an eta quotient. The second identity is a level thirteen analogue. These are special cases of a more general class of relations between eta quotients and modular functions defined by product generalizations of the Rogers-Ramanujan continued fraction. Each identity is shown to be a relation between generators for a certain congruence subgroup. The degree, form, and symmetry of the identities is determined from behavior at cusps of the congruence subgroup whose field of functions the parameters generate. The reciprocal identities encode information about fundamental units and class numbers for real quadratic fields.

Comments

Original published version available at https://doi.org/10.1090/proc/13113

Publication Title

Proceedings of the American Mathematical Society

DOI

10.1090/proc/13113

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.