School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Document Type
Conference Proceeding
Publication Date
5-2016
Abstract
Included in Ramanujan’s Notebooks are two reciprocal identities. The first identity connects the Rogers-Ramanujan continued fraction with an eta quotient. The second identity is a level thirteen analogue. These are special cases of a more general class of relations between eta quotients and modular functions defined by product generalizations of the Rogers-Ramanujan continued fraction. Each identity is shown to be a relation between generators for a certain congruence subgroup. The degree, form, and symmetry of the identities is determined from behavior at cusps of the congruence subgroup whose field of functions the parameters generate. The reciprocal identities encode information about fundamental units and class numbers for real quadratic fields.
Recommended Citation
Huber, Tim, and Daniel Schultz. "Generalized reciprocal identities." Proceedings of the American Mathematical Society 144.11 (2016): 4627-4639. https://doi.org/10.1090/proc/13113
Publication Title
Proceedings of the American Mathematical Society
DOI
10.1090/proc/13113
Comments
Original published version available at https://doi.org/10.1090/proc/13113