School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Document Type
Article
Publication Date
2-3-2023
Abstract
We enumerate and classify all stationary logarithmic configurations of d + 2 points on the unit sphere in d–dimensions. In particular, we show that the logarithmic energy attains its local minima at configurations that consist of two orthogonal to each other regular simplexes of cardinality m and n. The global minimum occurs when m = n if d is even and m = n + 1 otherwise. This characterizes a new class of configurations that minimize the logarithmic energy on Sd−1 for all d. The other two classes known in the literature, the regular simplex (d + 1 points on Sd−1) and the cross-polytope (2d points on Sd−1), are both universally optimal configurations.
Recommended Citation
Dragnev, Peter, and Oleg Musin. "Log-optimal (𝑑+ 2)-configurations in 𝑑–dimensions." Transactions of the American Mathematical Society, Series B 10.05 (2023): 155-170. https://doi.org/10.1090/btran/118
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License
First Page
155
Last Page
170
Publication Title
Transactions of the American Mathematical Society, Series B
DOI
10.1090/btran/118
Comments
Copyright 2023 by the author(s) under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)