School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

6-16-2022

Abstract

Reasoning with mathematics plays an important role in university students’ learning throughout their courses in the scientific disciplines, such as physics. In addition to understanding mathematical concepts and procedures, physics students often must mathematize physical constructs in terms of their associated mathematical structures and interpret mathematical entities in terms of the physical context. In this study, we investigate physics students’ reasoning about mathematics in relation to physics content addressed in two quantum mechanics problems. Through qualitative analysis of interview data from twelve students, results show that 1) students use intricate, nonuniform problem-solving methods with reasoning that moves fluidly between structural (mathematizing and interpreting) and technical (conceptual and procedural) skills in quick succession, and 2) student reasoning about orthonormal bases, change of basis, inner products, and probability informed their flexibility in choosing problem-solving approaches. We illustrate the results with examples of student reasoning and discuss the inextricability of mathematics and physics in students’ reasoning.

Comments

Reprints and Permissions

Original published version available at

https://doi.org/10.1007/s40753-022-00174-z

Publication Title

Int. J. Res. Undergrad. Math. Ed.

DOI

https://doi.org/10.1007/s40753-022-00174-z

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.