School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

2023

Abstract

In this paper, for a Borel probability measure P on a Euclidean space Rk, we extend the definitions of nth unconstrained quantization error, unconstrained quantization dimension, and unconstrained quantization coefficient, which traditionally in the literature known as nth quantization error, quantization dimension, and quantization coefficient, to the definitions of nth constrained quantization error, constrained quantization dimension, and constrained quantization coefficient. The work in this paper extends the theory of quantization and opens a new area of research. In unconstrained quantization, the elements in an optimal set are the conditional expectations in their own Voronoi regions, and it is not true in constrained quantization. In unconstrained quantization, if the support of P contains infinitely many elements, then an optimal set of n-means always contains exactly n elements, and it is not true in constrained quantization. It is known that the unconstrained quantization dimension for an absolutely continuous probability measure equals the Euclidean dimension of the underlying space. In this paper, we show that this fact is not true as well for the constrained quantization dimension. It is known that the unconstrained quantization coefficient for an absolutely continuous probability measure exists as a unique finite positive number. From work in this paper, it can be seen that the constrained quantization coefficient for an absolutely continuous probability measure can be any nonnegative number depending on the constraint that occurs in the definition of nth constrained quantization error.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.