School of Mathematical and Statistical Sciences Faculty Publications and Presentations
Document Type
Article
Publication Date
4-2023
Abstract
The p-adic cellular neural networks (CNNs) are mathematical generalizations of the neural networks introduced by Chua and Yang in the 80s. In this work we present two new types of -adic CNNs that can perform computations with real data, and whose dynamics can be understood almost completely. The first type of networks are edge detectors for grayscale images. The stationary states of these networks are organized hierarchically in a lattice structure. The dynamics of any of these networks consists of transitions toward some minimal state in the lattice. The second type is a new class of reaction–diffusion networks. We investigate the stability of these networks and show that they can be used as filters to reduce noise, preserving the edges, in grayscale images polluted with additive Gaussian noise. The networks introduced here were found experimentally. They are abstract evolution equations on spaces of real-valued functions defined in the p-adic unit ball for some prime number p. In practical applications the prime p is determined by the size of image, and thus, only small primes are used. We provide several numerical simulations showing how these networks work.
Recommended Citation
Zambrano-Luna, B. A., and W. A. Zúñiga-Galindo. "p-adic cellular neural networks: Applications to image processing." Physica D: Nonlinear Phenomena 446 (2023): 133668. https://doi.org/10.1016/j.physd.2023.133668
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Publication Title
Physica D: Nonlinear Phenomena
DOI
https://doi.org/10.1016/j.physd.2023.133668
Comments
Original published version available at https://doi.org/10.1016/j.physd.2023.133668