School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Minimal Time Functions and the Smallest Intersecting Ball Problem with Unbounded Dynamics

Document Type

Article

Publication Date

4-3-2012

Abstract

The smallest enclosing circle problem introduced in the nineteenth century by Sylvester asks for the circle of smallest radius enclosing a given set of finite points in the plane. An extension of this problem, called the smallest intersecting ball problem, was also considered recently: given a finite number of nonempty closed subsets of a normed space, find a ball with the smallest radius that intersects all of the sets. In this paper, we initiate the study of minimal time functions generated by unbounded dynamics and discuss their applications to further extensions of the smallest enclosing circle problem. This approach continues our effort in applying convex and nonsmooth analysis to the well-established field of facility location.

Comments

Reprints and Permissions

https://rdcu.be/dmeRr

Publication Title

J Optim Theory Appl

DOI

https://doi.org/10.1007/s10957-012-0048-z

Share

COinS